Replication potential of the ClearSupport concept beyond the current PSF regions

Miha Tomsic
Marjana Sijanec Zavrl
Building and Civil Engineering Institute ZRMK, Slovenia

TOOLS FOR SUPPORTING SUSTAINABLE DEVELOPMENT POLICY
ClearSupport Conference
Gdansk July 8, 2009
General aspects:

Concept – when and where
Guidelines, tools and reports

<table>
<thead>
<tr>
<th>Metric</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td>2 mio inhabitants</td>
</tr>
<tr>
<td>Area</td>
<td>20.000 km²</td>
</tr>
<tr>
<td>Number of residential buildings</td>
<td>463,029</td>
</tr>
<tr>
<td>Number of dwellings</td>
<td>777,772</td>
</tr>
<tr>
<td>Average number of dwellings per building</td>
<td>1.7</td>
</tr>
<tr>
<td>Total floor space of dwellings</td>
<td>58,031,187 m²</td>
</tr>
<tr>
<td>Average floor space of dwelling</td>
<td>71.3 m² 8,000 dw./year</td>
</tr>
<tr>
<td>Average size of private household (persons)</td>
<td>2.8</td>
</tr>
<tr>
<td>Share of dwellings in urban settlements</td>
<td>51.6%</td>
</tr>
<tr>
<td>Share of population in urban settlements</td>
<td>50.5%</td>
</tr>
<tr>
<td>Occupation of dwellings in urban settlements</td>
<td>89.5%</td>
</tr>
<tr>
<td>Occupation of dwellings in rural settlements</td>
<td>81.2%</td>
</tr>
</tbody>
</table>

After privatisation in 90-ties 90% of flats are private

Source: SURS, Census, 2002
1946-1980 apartment buildings

- 61% of all residential buildings are from 1946-1980 period,
- **1946-1953** rehabilitation of WW2 demolished buildings,
- **1954-1967** state-owned social housing built,

- **late 60-ties and 70-ties - flourishing period!**
 - 1967 national regulation for design of dwellings
 - 1973 Ljubljana - municipal rules for apartment buildings construction
 - 1971 New construction technologies introduced – “outinord” cast in place concrete buildings up to 3 cm insulation obligatory – first attempt!
Residential buildings in urban areas

Buildings per year of construction and architectural building type

Figure: Distribution of houses and buildings in urban settlements by their age (Source: SURS, Census, 2002).
Some buildings from the most frequent groups subject to refurbishment

- 50-ties, masonry, no TI, GF + 3 storeys
- Late 50-ties, masonry, no TI, high rise building
- Early 60-ties, masonry, no TI, self-standing building
- Late 70-ties, reinforced concrete, pre-cast large panels; low TI, thermal bridges, envelope elements, masonry, GF + 4 storeys
- Late 70-ties, cast in place reinforced concrete “self standing” blocks, low TI
- Late 70-ties, concrete high multi-story buildings with pre-cast large panel envelope elements
Upgrading quality standards...

Energy use for heating and DHW, electricity consumption

EPBD legislation 2007:
Reduction of heat demand by improved envelope and beyond, by mechanical ventilation heat recovery min. 0.8
Supported: RES for DHW and for space heating

Source: GI ZRMK, MP)

Specific energy use (kWh/m² year)

- Electricity
- Fuel conversion into heat
- Heat for DHW
- Energy demand for heating

- Passive house
- Low energy house
- Contemporary buildings / restoration, 2002
- Existing building stock 1980 - 2002
- Old buildings 1946-1980
Typical renovation case study

1960
40 flats, 95 residents, 1860 m²
Walls: prefabricated concrete plates mixed with wooden chips
U=1.3 W/m²K
Windows U=2.7

2005
(investment 100,000 EUR, 10% subsidy)
Wall: 0.35 W/m²K (67,100 EUR)
Windows: U glazing=1.1 W/m²K (31,300 EUR)
Savings: 125,000 kWh (21%)
7,000 EUR/year, PB 14y (total), PB incremental investment PB 3-4 years

Non-renovated apartment house Sisenska 42-44 in Ljubljana. IR thermography detected cold bridges in the envelope: (joints of concrete panels).

Outer wall: thermal insulation of outer wall with 8 cm thick polystyrene layer.
Windows: installation of energy efficient windows with low-e double glazing (Ug=1.1 W/m²K with six-chambers PVC window frames, where the Uw=1.1 W/m²K.)
Facts: Ljubljana Housing Fund

- 3200 flats owned by Ljubljana Housing Fund – public fund of Municipality of Ljubljana (280,000 inhabitants)
- Mixed ownership: difficult decision-making
- Low income tenants – paying the operational costs may become a problem and additional burden for Ljubljana Housing Fund
- Aim: EI-refurbishment of existing buildings and new energy efficient construction
- Participation in EIE projects, FP5 demonstration projects, energy certification, passive house, LCC

Pipanova pot, Ljubljana, 20 new flats in low energy standard, design 2007
JSS MOL – Hermana Potocnika, Ljubljana
Passive House Refurbishment

1975/2004, EU FP5 Large High Rise
Reconversion Housing - University of Ljubljana, Faculty of Civil Engineering & Ljubljana Housing Fund JSS MOL;

- energy savings - 63%
- Insulation of facades
- insulation of roof
- Insulation of ground floor
- New balconies without thermal bridges
- Solar protection roller blinds + night insulation
- High efficiency insulation glazing and frames
- Management and control system: BMS, heating system management and control
New social housing
Polje II, Ljubljana

- Low energy buildings
- Controlled ventilation incl. humidity control
- Local d.h. system
- Solar collectors for DHW 50m2 /bld.
- 1 PV power plant 12 kW
- Design: ongoing in 2007
- Construction: 2009
Practical case: Before - Steletova 8, Ljubljana, 1.800 m², 60 flats

Before
- Wall 17 cm concrete + 5 cm TI
- Ceiling 8 cm TI
- Windows U=2,7 W/m²K
- Q_{NH} = 75-85 kWh/m²a

Planning passive standard renovation
- additional thermal insulation (15 cm)
- Windows PVC Uw=1,5W/m²K
- adjustment of heating system
- mechanical ventilation, 75% heat recovery
- target Q_{NH} 5 kWh/m²a
- Simplified calculation of energy demand; no scenarios, investment costs estimated, lowest prize tender for execution of works selected

<table>
<thead>
<tr>
<th>Energy Demand</th>
<th>kWh/m²a</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>25-40</td>
</tr>
<tr>
<td>B</td>
<td>40-55</td>
</tr>
<tr>
<td>C</td>
<td>55-70</td>
</tr>
<tr>
<td>D</td>
<td>75-85</td>
</tr>
<tr>
<td><25 kWh/m²a</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Energy Demand</th>
<th>kWh/m²a</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>25-40</td>
</tr>
<tr>
<td>B</td>
<td>40-55</td>
</tr>
<tr>
<td>C</td>
<td>55-75</td>
</tr>
<tr>
<td><25 kWh/m²a</td>
<td></td>
</tr>
</tbody>
</table>
After renovation (2006/2007)

After renovation: Facade East

After renovation: Facade West

System of mechanical ventilation with heat recovery – single compact units in chosen rooms in each apartment

Benefits

• Thermal comfort?
• Energy (cost) savings?
• Users’ habits...
Was the renovation success or failure?

Energy savings are below expectations (costs reduction only 20%)

Reasons

• energy calculation – over estimated savings?
• Users’ behaviour – cause bigger losses than expected

Doubts about mechanical ventilation with heat recovery

Future practice?

Questions

Would detailed energy simulation and LCC-based selection of renovation scenario give a different recommendation to decision-makers?

What is the influence of energy calculation quality and users behavior to LCC of renovation scenarios?
Current position of LCC in Slovenia

Growing interest for LCC due to:

- **EPBD & Recast EPBD** – LCC thinking is more and more integrated in min. requirements, cost effectiveness of recommended measures in EPC; required in regulation for feasibility studies of AES;

- **Green public procurement** (“the economically most viable offer based on more comprehensive criteria” can be selected – impact of these criteria (incl. LCC) is up to 60%)

- **PPP** – many projects already started...

- **Limited experiences with LCC** at a building level (building concept alternatives were traditionally not analysed as a part of investment programme – but the savings are promising)

- Public sector is in focus of national EEAP (ESD):
 - Priority - renovation of social housing including demonstration projects
 - Our aim to demonstrate the dimensions of LCC based planning of renovation scenarios
Energy calculation and Level 2 LCC at system level
Steletova, Ljubljana – in progress

VAR0-before renovation
VAR1-after renovation with ventilation & heat recovery
VAR2-after renovation, inadequate user habits – open windows

108 kWh/m²a before (calc. PHPP)
27 kWh/m²a as planned (PHPP)
36 kWh/m²a actual (PHPP)
LCC calculation assumptions

SCENARIOS:
- VAR1: existing situation + only maintenance (theoretical)
- VAR2: existing situation; replaced windows and facade (no energy improvement)
- VAR3: VAR2 + mechanical ventilation with heat recovery
- VAR4: renovation (windows and wall TI) no mech. ventilation
- VAR5: renovation (windows and wall TI) + mech. ventilation
- VAR6: renovation (windows and wall TI) + mech. ventilation + bad users’ habits (uncotrolled ventilation)
- VAR7: as usual: windows replaced in 10 years, no TI of walls (investment, operational costs, maintenance, replacement, repair cost

<table>
<thead>
<tr>
<th>Price heating [€/kWh]</th>
<th>Q (kWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.03175</td>
<td></td>
</tr>
</tbody>
</table>

Increase of energy price
- 6.0%

Interest rate
- 2.5%

Inflation
- 2.5%
Preliminary LCC results
Preliminary LCC results

To do:
Consider actual investment instead of pre-calculated one

SCENARIOS:
- VAR1: existing situation + only maintenance (theoretical)
- VAR2: existing situation; replaced windows and facade (no energy improvement)
- VAR3: VAR2 + mechanical ventilation with heat recovery
- VAR4: renovation (windows and wall TI) no mech. ventilation
- VAR5: renovation (windows and wall TI) + mech. ventilation
- VAR6: renovation (windows and wall TI) + mech. ventilation + bad users’ habits (uncotrolled ventilation)
- VAR7: as usual: windows replaced in 10 years, no TI of walls

<table>
<thead>
<tr>
<th>VARIANTA</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cas preklo:</td>
<td>/</td>
<td>6</td>
<td>27</td>
<td>29</td>
<td>/</td>
</tr>
<tr>
<td>Prihajanje z 30 leti:</td>
<td>218.535 €</td>
<td>260.795 €</td>
<td>64.055 €</td>
<td>7.654 €</td>
<td>258.075 €</td>
</tr>
</tbody>
</table>
ClearSupport “targets”:
(current activities by ZRMK)

Montenegro
Kosovo
FYR Macedonia
Bulgaria

…..
Bulgaria - facts:

Post-WW2 period: migration from villages to cities

-> social problems; construction of panel-type concrete multi-storey buildings

Period 1960 – 1995:
18,900 panel dwelling buildings with 707,441 dwellings (>25% of the population)

Beginning of 1990s: privatisation;
97% of the housing stock now private-owned
National Programme for Refurbishment of Dwelling Buildings in Bulgaria:

20% of the costs of the refurbishment of 684,676 dwellings in big residential buildings erected with reinforced concrete panels to be subsidized by the state.

Important:

Refurbishment should include the implementation of energy saving measures.

-> need for guidance, expert support, definition of appropriate measures, trusted calculation procedures
FYR Macedonia - facts:

Post-WW2 period:
intensive urban development;
>85% of the present housing stock built.

1950s, early 1960s (25-30%):
in need of comprehensive reconstruction.

Later periods:
in a relatively good condition (construction – seismic characteristics!), but inadequate thermal characteristics

Present state:
99% privatised (almost 700,000 dwellings)
83% occupied
Approx. 60% of the building stock: 1- or 2-storey single or double-family houses

The tendency:

to live in a new apartment (-> surplus created!) in a town
<- negligence of maintenance of older buildings

Outcome:

unnecessary condensation and overpopulation of existing urban areas.

Problems:

- incapacitation of the possibility to grow financial resources for maintenance and refurbishment (effect of privatisation);
- uncontrolled and unskilled DIY constructional interventions by homeowners.
Thank you for your attention!

Sources:
JSS MOL, E-NET.si, IMOS
EIE LCC DATA
EIE EI-Education
M Mirtic, diploma 2009
S Trpevski, COST C16, 2007